2017年下半年教师资格证面试报名时间是12月12日-15日,考试时间是2018年1月6日-7日。小编为广大考生整理了教师资格证高中数学教案模板:解析几何相关内容,适用于所有参加2017下半年中学教师资格国考面试的考生,请学员们根据资料规划复习时间!更多教师资格考试内容持续更新中,请考生及时关注文都教师考试网(jiaoshi.wendu.com)。
一、背景分析
1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。
在旧教材中,这节内容安排在《解析几何》第二章“圆锥曲线”的第三节讲 授,而在新教材中,这节内容被安排在数学第一册(上)第一章中“简易逻辑”的第三节。除了教学位置的前移之外,新教材中与充要条件相关联的知识体系也作了 相应的扩充。在“充要条件”这节内容前,还安排了“逻辑联结词”和“四种”这二节内容作为必要的知识铺垫,特别是“逻辑联结词”这部分内容是第一次进 入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对的理解,也便于老师讲透充要条件这一基本数学概念。
教学重点:充分条件、必要条件和充要条件三个概念的定义。
2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充 分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是 “掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动 式逐步深化,使之与学生的知识结构同步发展完善。
教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因 此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的 概念都难以理解.对于“B=>A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。
教学关键:找出A、B,根据定义判断A=>B与B=>A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。
二、教学目标设计:
知识目标:
1、正确理解充分条件、必要条件、充要条件三个概念。
2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种间的关系。
3、在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。
(二)能力目标:
1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
3、培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中。
(三)情感目标:
通过以学生为主体的教学方法,让学生自己构造数学,发展体验获取知识的感受。
通过对的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
三、教学结构设计:
数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原 型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、 “探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。
整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈
整个教学设计的主要特色:(1)由生活事例引出课题;
(2)例1采用开放式教学模式;
(3)扩展例题2是分析生活中的名言名句,又将数学融入生活中。
努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。
四、教学媒体设计:
本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背 景,以激发学生的学习兴趣,www.wenwu8.com另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。
五、教学过程设计:
第一,创设情境,激发兴趣,引出课题:
考虑到高一学生学习这一章的知识储备不足,为了让学生更易接受这一节内容,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。
我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够” 的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。
第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。
用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。
第二,引导学生分析实例,给出定义。
在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。
得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作。
更多教师资格消息,敬请关注文都教师考试网!
>>>推荐阅读:2017下半年全国教师资格证笔试成绩查询入口